Лучше всего люди «разбираются» в том, к чему не имеют отношения. А если учесть, как часто обсуждают между делом достижения спортсменов и их личную жизнь, стоит ли удивляться, что тема спорта и повышенных физических нагрузок обросла огромным количеством мифов.
Миф № 1. Если небеса даруют силу – они обделяют умом
Корень этого распространенного мифа, скорее всего, кроется в банальной зависти. Горестные мысли о том, что «кому-то все, а мне ничего», порождают желание хоть как-то принизить кумира, который и силен, и успешен, и любовью противоположного пола не обделен. Но тут сама жизнь доказывает – ничто не мешает профессиональному спортсмену быть умнейшим человеком!
Давайте вспомним хотя бы легенду советской тяжелой атлетики, Юрия Власова. Его не случайно считали в свое время самым сильным человеком – он столько раз брал «золото» на всевозможных первенствах европейского и мирового уровня!
При этом Власов был хорошо образованным человеком, военным инженером, историком, литератором, после окончания спортивной карьеры занимался политикой. Он происходил из интеллигентной семьи – отец Юрия достиг в свое время высот дипломатической карьеры. Власов уже в юности свободно владел китайским языком и обладал такой невероятной любовью к чтению, что даже повредил зрение – главный силач мира в обыденной жизни был вынужден носить «интеллигентские» очки.
После череды его впечатляющих побед, западная пресса писала не только о невероятной силище атлета, но и о его блестящем интеллекте. В промежутках между установлением 31 мирового рекорда Власов нашел время, чтобы написать несколько книг – публицистических и художественных произведений, которые были очень популярны в СССР.
Между прочим, миф о том, что спортсмены-силовики не блещут интеллектом, опровергают многочисленные успехи бывших рекордсменов в деловой сфере. Ведь никто не будет спорить, что для этого требуется недюжинный ум. Так вот, состояние Арнольда Шварценеггера оценивается в 200 миллионов долларов, и большую часть он получил в результате успешного развития собственного бизнеса. Это можно сказать и про величайшего баскетболиста Майкла Джордана, который сегодня, уже оставив спорт, зарабатывает исключительно своим умом по 40 миллионов долларов в год.
Миф № 2. Профессиональный спорт и женственность несовместимы
Очень часто можно услышать мнение о том, что женщины, занимающиеся атлетическими видами спорта, некрасивы и плохо сложены – похожи на мужчин с перекаченной мускулатурой, грубы и напрочь лишены изящества. Причем, подобные замечания отпускают в адрес пловчих и спринтерш, биатлонисток и велосипедисток. Избежали насмешек над своей «мужеподобной» внешностью разве что теннисистки и гимнастки.
Этот миф опровергается буквально каждый день, когда всевозможные таблоиды раз за разом публикуют топы самых красивых женщин планеты. Ведь «в компанию» киноактрис и звезд шоу-бизнеса профессиональные спортсменки попадаются не так уж редко.
Если говорить о профессиональных атлетках, то надо в первую очередь упомянуть нашу прыгунью с шестом Елену Исинбаеву, дважды бравшую олимпийское золото. Между прочим, она уже имеет степень магистра и продолжает заниматься своим образованием. Но главное, это удивительно красивая, грациозная, изящная женщина, фотографии которой не раз украшали обложки модных журналов.
А Лерин Франко, парагвайская копьеметательница, получившая «серебро» на последней Олимпиаде? Она параллельно является вице-мисс красоты в своей стране и успешно сочетает большой и довольно тяжелый спорт с карьерой профессиональной модели.
Возможно, кто-то заметит, что женщин уродует только штанга? Но как быть с казахской тяжелоатлеткой Майей Манеза, которая славится на весь мир своими уникальными спортивными достижениями и своей ослепительной улыбкой?
Уже несколько лет в женской тяжелой атлетике Майе нет равных, она побеждает везде, где только можно. Однако в обычной жизни, вне подмостков, девушка вовсе не производит впечатления «бой-бабы» - это элегантная, со вкусом одетая леди, которая не выносит спортивной одежды и ходит исключительно на высоких каблучках.
А еще Майя Манеза обожает дорогие ювелирные украшения и с удовольствием занимается шопингом в свободное от тренировок время.
Миф № 3.
У всех «качков» проблемы с потенцией
Получается, что чем больше мышц нарастил спортсмен, тем хуже у него с личной жизнью. Полный бред, порожденный воспаленным воображением завистников! Наоборот, занятия спортом потенцию только повышают, потому что нормализуют обменные процессы и гормональный фон. Доля истины в мифе о потенции «качков» касается лишь применения анаболиков, но это, как говорится, дело вкуса. Далеко не все атлеты принимают стероиды.
К тому же, если природа требует свое, то и анаболики не помешают. Возьмем того же Шварценеггера – он не оспаривает факт, что в юности, еще не зная о вреде стероидов, ими «побаловался». Но что-то на его потенции это никак не сказалось – до женитьбы Арни был тот еще ходок. Приятели утверждают, что избалованный женским вниманием культурист мог запросто подойти к малознакомой девушке, чтобы сделать ей нескромное предложение. Что интересно, никто обычно не отказывался.
Если же говорить о последствиях «тяжелых» видов спорта, то стоит заметить, что в своем подавляющем большинстве профессиональные спортсмены бесплодием не страдают. Наш известный боец Александр Емельяненко имеет дочку, у Брюса Ли был сын, а боксер-тяжеловес Майк Тайсон за свою жизнь «родил» целых 6 детей!
Миф № 4.
Профессиональный спорт вреден для здоровья
Вреден не спорт, а неправильные тренировки и неверное распределение собственных сил. Если человек, занимающийся большим спортом, не пренебрегает своим здоровьем, то может сохранить его до глубокой старости.
Достаточно вспомнить еще одного советского силача, Леонида Жаботинского.
Надо заметить, что в юности прославленный спортсмен занимался также толканием ядра, боксом и борьбой, что не помешало ему найти в себе силы для тяжелой атлетики. Между прочим, в то время он был худеньким и даже хрупким мальчиком.
Победив самых прославленных конкурентов и установив массу невероятных рекордов, Жаботинский ушел с помоста непобежденным. При этом в свои 75 лет он занимается автогонками и тренирует молодежь в клубе тяжелой атлетики. Что ни говори, а спортивные нагрузки его здоровью повредили гораздо меньше, чем многим другим – алкоголь и неправильный образ жизни.
Приветствую друзья давно меня не было улетал в сша не до этого было, но это не главное, сегодня решил провести небольшой розыгрыш.
И заодно написать о травмах в бодибилдинге.
Любому спортсмену всегда обидно получать травмы, особенно в разгаре сезона. Приходится вынужденно ограничивать тренировки или совсем исключать нагрузку. Это приносит не только физический, но и психологический вред. Поэтому очень важно внимательно отнестись в профилактике травматизма и восстановлению после травм.
Бодибилдинг
— несомненно, тяжелый вид спорта, и невероятно травматичный. Ведь выполняя то или иное упражнение, часто включаются сразу несколько мышечных групп. Помимо мышц в поднятии веса также участвуют связки, сухожилия — все это вместе и составляет наиболее уязвимые зоны атлета.
Основными мышечными зонами риска атлета являются:
поясница (позвоночный столб), плечевой и коленный суставы.
Именно они больше всего подвержены травмам. Также в зоне риска локтевые и лучезапястные суставы.
Рассмотрим самые распространенные травмы в бодибилдинге и рекомендации по их лечению:
- Ушибы — закрытое повреждение тканей и органов. Проявляется тупой болью, может появиться отек, гематома. Лечение: в большинстве случаев врачебная помощь не требуется. Используем холодные компрессы, покой, фиксирующая повязка.
- Вывихи (подвывихи) — смещение поверхностей сустава. Поврежденный сустав имеет неправильную форму, конечность имеет неестественное положение, при движении и прикосновении ощущается острая боль. Лечение: в кратчайшие сроки обратитесь к врачу! может потребоваться рентген. Врач вправит сустав и наложит фиксирующую повязку.
- Растяжения и разрывы связок — возникают при больших нагрузках, которые по своему воздействию превышают уровень эластичности тканей сустава и мышцы. Возникают при резких движениях в суставе. Возникает припухлость, боль при движении и прикосновении, ограниченность движений. Лечение: важно сразу приложить к поврежденному месту лед и продолжать делать холодные компрессы в течение нескольких дней, зафиксировать эластичным бинтом. Использовать противовоспалительные мази, снизить или вовсе исключить нагрузки. Если не уверены, что справитесь с травмой самостоятельно, обратитесь к врачу.
- Бурсит — воспаление слизистых сумок в области суставов. Наиболее уязвленные плечевые и локтевые суставы. Возникает при многократном физическом воздействии, при воспалении сухожилий, из-за инфекции. Лечение: тепловые и физиопроцедуры, ограничение подвижности сустава, исключение нагрузок.
- Травмы позвоночника — наиболее опасные и требующие длительного восстановления. Чаще всего в бодибилдинге страдает поясничный отдел позвоночника. Важно правильно диагностировать травму, от этого зависит план лечения. Любое подозрение на получение травмы, боль или нарушение подвижности должны стать причиной для обращения к врачу. Лечение: подбирается индивидуально, может понадобиться хирургическое вмешательство.
Очень важно долечивать травмы до конца во избежание рецидивов, поэтому не торопитесь бежать в зал при первой положительной динамике. Уделяйте внимание профилактике травм и будьте здоровы!
И так перейдем к розыгрышу 😁
Призом у нас будет, для девушек:
Витамины для женщин VERY WOMEN 90 капсул Matrix Labs, Витамины для волос, кожи и ногтей.
Для мужчин:
Чтобы получить свои витамины достаточно будет прийти на пункт доставки озон и забрать их. Ну и самое главное это угадать какую травму я получил когда начинал заниматься с железом. Да и не забудь подписаться на мой канал #Розыгрыш где я и дальше буду проводить разные розыгрыши.
И так 1 вариант: ушиб.
2 вариант: вывих.
3 вариант: растяжение, разрыв.
4 вариант: Бурсит — воспаление слизистых сумок в области суставов.
Все просто друзья 😊 дерзайте и я зделаю это для вас.
Кто первый напишет верный ответ тот и заберёт.
Я всегда воспринимал бодибилдинг как вид искусства. Только моим материалом является не глина, а собственное тело», — Френсис Бенфато.
Основным требованием для потребления белка является обеспечение аминокислотами-предшественниками, особенно EAA, необходимыми для оборота белка.
Обмен белка необходим во всех тканях для постоянного обновления жизненно важных белков организма.
В мышцах стимуляция обмена белка является ответом на механо-метаболические стимулы и гарантирует, что поврежденная, менее функциональная ткань заменяется более эффективными компонентами.
В то время как белки организма требуют широкого спектра аминокислот, уже давно понятно, что стимуляция обмена мышечных белков зависит от обеспечения EAA.
Недавно было продемонстрировано, что матрица доставки и фармакокинетика ЭАА напрямую влияют на стимуляцию оборота мышечного белка и МПС, с более простыми формами введения, такими как комбинации ЭАА в свободной форме и/или в свободной форме, что приводит к большей доставке ЭАА и стимуляции обмена мышечных белков.
Установлено, что как устойчивость и аэробные Физические упражнения стимулируют обмен белка в скелетных мышцах.
Кроме того, физические упражнения повышают сенсибилизацию скелетных мышц к стимулирующим эффектам экзогенных аминокислот.
Таким образом, интуитивно понятный вывод заключается в том, что мышечная активность/упражнения требуют потребления белка для ремоделирования, производительности и функционирования.
Однако вопрос о рекомендуемом количестве белка зависит от нескольких физиологических и метаболических факторов.
Было высказано предположение, что употребление 20-30 г высококачественного белка, такого как сыворотка, обеспечит адекватную стимуляцию обмена мышечного белка в сочетании с физическими упражнениями.
Эта рекомендация в значительной степени основана на двух основополагающих исследованиях Мура и Witard, которые продемонстрировали максимальную реакцию МПС на прием 20 г сывороточного белка в сочетании с физическими упражнениями. Последующее исследование с использованием большего стимула упражнений (упражнение с отягощениями для всего тела) МакНотона продемонстрировали достоверное повышение МПС при приеме 40 г белка.
Взятые вместе, эти данные косвенно свидетельствуют о том, что больший стресс от физических нагрузок (вероятно, с привлечением большего количества групп мышц) требует большего потребления белка.
Это согласуется с недавними результатами аналогичных военных исследований, предполагающими, что дефицит калорий при или без Сопутствующие физические упражнения, требуют повышенного потребления белка. Например, при 30% дефиците калорий требуется 35 г белка для обеспечения протеостаза всего тела и сохранения обмена мышечного белка.
Наконец, при рассмотрении вопроса об оптимальном потреблении белка важно признать важность состава пищевого белка EAA.
Например, растительные пищевые белки обычно имеют более низкое содержание EAA, чем животные пищевые белки.
В большинстве исследований диетического белка и физических упражнений использовался сывороточный протеин, и для достижения тех же результатов, вероятно, потребуется большее количество растительного пищевого белка.
Тем не менее, недавняя работа Trommelen et al. показала, что употребление 100 граммов молочного белка приводит к большему анаболическому ответу, чем 25 граммов.
Было обнаружено, что этот анаболический ответ является довольно продолжительным (>12 часов).
Это опровергает представление о том, что синтез мышечного белка достигает пика при ~ 40 граммах после приема.
При энергетическом дефиците протеостаз всего тела поддерживается за счет стимуляции оборота мышечного белка.
Эти данные свидетельствуют о том, что физиологическое состояние диктует адекватность и количество потребляемого белка.
Таким образом, во время гомеостатического, нестрессового состояния было высказано предположение о том, что достаточно 20–30 г высококачественного белка.
Напротив, увеличение метаболического стресса требует большего потребления белка для удовлетворения потребностей всего тела и мышц. Тем не менее, предварительные данные свидетельствуют о том, что острое потребление до 100 граммов приводит к более сильному и длительному анаболическому ответу, чем более низкое потребление.
Таким образом, идеальное потребление белка зависит от физиологического состояния. Преобладание данных свидетельствует о том, что ≥20 г может стимулировать МПС у молодых людей. Однако с увеличением метаболического стресса (например, потеря веса, увеличение объема тренировок и т. д.) преимущества проявляются при большем потреблении. Более того, неизвестно, каков верхний предел потребления белка в одном приеме пищи, хотя есть данные о том, что острое потребление 100 граммов действительно используется организмом.
Заключение:
- Нет никаких доказательств того, что потребление пищевого белка вредит почкам здоровых людей.
- У мужчин и женщин, тренирующихся физическими упражнениями, употребление диеты с высоким содержанием белка либо оказывает нейтральный эффект, либо может способствовать потере жировой массы.
- Нет никаких доказательств того, что пищевой белок оказывает вредное воздействие на кости.
- Веганы и вегетарианцы могут потреблять достаточное количество белка для поддержки адаптации к тренировкам.
- Сыр и арахисовое масло являются недостаточными источниками белка.
- Красное мясо вряд ли вызовет неблагоприятные последствия для здоровья; Однако обработанное мясо может нанести потенциальный вред (например, повысить риск сердечно-сосудистых заболеваний).
- Люди, которые не ведут физическую активность, все равно нуждаются в пищевом белке.
- Прием белка после (≤1 часа) тренировок с отягощениями не является абсолютным требованием для создания анаболической среды. Более важным представляется общее ежедневное количество потребляемого пищевого белка.
- Спортсмены на выносливость нуждаются в дополнительном белке (т.е. по крайней мере в два раза больше рекомендуемой суточной нормы) для решения различных проблем, связанных с адаптивной реакцией на физические упражнения.
- Протеиновый порошок не нужен для удовлетворения ежедневных потребностей людей, тренирующихся физическими упражнениями. Тем не менее, обращение с протеиновым порошком иначе, чем с типичной белковой пищей (например, говядиной, курицей, молоком и т. д.), не имеет научного смысла.
- Для большинства людей достаточно потребления 20–30 граммов высококачественного белка, чтобы вызвать значительный анаболический ответ; Тем не менее, есть данные, свидетельствующие о том, что 100 граммов могут вызывать более высокий и более длительный анаболический ответ.
Людям, занимающимся физическими упражнениями, рекомендуется употреблять белок в количествах от 1,4–2,0 г/кг/день, и когда человек хочет максимизировать свое телосложение за счет строгих диетических ограничений, суточное потребление и доля белка в рационе для этих людей рекомендуется повышать (2,3–3,1 г/кг мышечной массы/день).
Было показано, что прием белка (3,4 г/кг в день) в течение восьми недель улучшает состав тела за счет увеличения мышечной массы тела в сочетании со снижением жировой массы.
В то время как такое высокое ежедневное потребление белка было достигнуто за счет потребления порошка сывороточного белка, Пасиакос и коллеги продемонстрировало, что ежедневное потребление белка в 2× и 3× выше RDA наилучшим образом максимизирует потерю жира в условиях 40% дефицита энергии в течение трехнедельного периода в группе гражданских участников мужского и женского пола.
В таких ситуациях решающее значение имеет общее потребление энергии, и протеиновые порошки предлагают прагматичный способ удовлетворить возросшие потребности в белке при минимальном потреблении дополнительных калорий.
Мета-анализ Cermak et al. обобщил данные 22 отдельных исследований (n = 680), придя к выводу, что белковые добавки привели к значительно большему приросту обезжиренной массы и силы нижней части тела. В 2015 году Pasiakos et al. опубликовал описательный обзор и пришел к выводу, что добавленные белковые добавки благоприятно влияют на изменения мышечной силы и гипертрофии у тренированных людей, но оказывают меньшее влияние на нетренированных людей.
Наконец, мета-анализ и мета-регрессия 2018 года, проведенные Мортоном и его коллегами обобщил данные 49 исследований с участием 1863 человек и пришел к выводу, что прием белковых добавок значительно увеличивает максимальную силу и площадь поперечного сечения мышечных волокон.
Таким образом, белковые добавки не требуются; Тем не менее, он может стать удобным дополнением к цельным продуктам для достижения общей суточной потребности в белке.
В то время как окисление углеводов и липидов составляет большую часть топливного метаболизма во время упражнений на выносливость, более длительные тренировки (т.е. >2 часа) также начинают усиливать окисление аминокислот, особенно лейцина.
Кроме того, повреждение тонкого кишечника может быть результатом более длительных или интенсивных тренировок на выносливость, связанных с гипоксией.
В обоих сценариях отрицательный белковый баланс всего организма является распространенным результатом.
Несмотря на то, что большая часть исследований белка, связанных с тренировками с отягощениями, часто сосредоточена на МПС и/или гипертрофии скелетных мышц, белковые соображения для спортсменов на выносливость должны учитывать не только эти результаты.
Производительность и эффекты восстановления часто являются второстепенными соображениями или вообще игнорируются, даже несмотря на то, что белковые добавки могут поддерживать или усиливать физиологические тренировочные эффекты упражнений на выносливость.
Было показано, что прием внутрь только аминокислот с разветвленной цепью положительно влияет на производительность и пиковую мощность в испытаниях на время и потенциально задерживают центральную усталость за счет модификации серотонина.
Тем не менее, комбинация белка и других питательных веществ, особенно углеводов, по-видимому, оказывает наиболее выраженное влияние на реакцию на тренировку выносливости и адаптацию при диетическом вмешательстве.
Метааналитические данные показали среднее улучшение производительности, особенно в отношении времени до истощения, на 9% при употреблении белка и углеводов по сравнению с употреблением только углеводов.
Кроме того, эти эффекты были связаны не только с повышенным потреблением энергии; Даже изокалорические условия продемонстрировали различия. Потребление белка после тренировки также, по-видимому, оказывает благоприятное влияние на восполнение гликогена, что может еще больше повлиять на результаты производительности.
Это, по-видимому, наиболее эффективно, когда потребление углеводов спортсменом после тренировки является неоптимальным, что не редкость в реальных условиях, особенно когда проводится несколько тренировок в день.
Также есть доказательства того, что этот совместный прием уменьшает симптомы повреждения мышц.
Было продемонстрировано, что даже включение белка в регидратационные напитки положительно влияет на поглощение жидкости кишечником.
Подготовка к марафонам и участие в них представляют собой уникальный и реальный физиологический вызов.
В одном 5-недельном исследовании опытные и/или элитные марафонцы получали 33,5 г/день мальтодекстрина или сывороточного белка после каждой тренировки, предшествующей забегу.
Было обнаружено, что белковые добавки благоприятно влияют на аспартатаминотрансферазу и аланинаминотрансферазу, а также на маркеры повреждения мышц (т.е. креатинкиназу и лактатдегидрогеназу) после марафона по сравнению с углеводными добавками.
Оба маркера повреждения мышц все еще были повышены через неделю после гонки в группе углеводов по сравнению с группой белков.
Также наблюдалось снижение общего холестерина в группе белков, что потенциально позволяет предположить, что эти люди более эффективно преобразовывали холестерин в стероидные гормоны, что может помочь объяснить различия в выздоровлении.
Эти различия не ограничивались только биохимическими маркерами стресса и повреждений, поскольку восстановление функций в течение недели после марафона также было больше в группе, принимавшей белковые добавки.
Спортсмены с силовой выносливостью, такие как футболисты, также, по-видимому, получают пользу от увеличения потребления белка.
Добавки с концентратом молочного белка (80% казеина и 20% сыворотки) положительно влияли на высокоинтенсивные результаты бега в последние 15 минут матча по сравнению с изокалорийными углеводными добавками при приеме внутрь в течение 1 недели в течение сезона.
Белковая добавка также способствовала восстановлению концентрической силы разгибателей коленного сустава и эндогенных антиоксидантных реакций.
Учитывая более распространенные разговоры о более высоком потреблении белка и его влиянии на опорно-двигательный аппарат, роль этого макроэлемента в других системах и физиологическая адаптация к тренировкам часто получают минимальное внимание.
Для спортсмена на выносливость эти другие функции могут быть жизненно важны как для здоровья, так и для производительности. Например, риск инфекции верхних дыхательных путей повышен у тех, кто занимается тренировками на выносливость в больших объемах и с высокой интенсивностью.
Было показано, что ежедневное потребление белка с пищей в размере 3 г/кг смягчает нарушение циркулирующих иммунных клеток во время интенсивных тренировок, со значениями, аналогичными тем, которые наблюдаются при более легких тренировках, хотя потребление белка в 1,5 г/кг/день не смягчает его.
Это положительное влияние на иммунную функцию также наблюдалось при приеме добавок BCAA в дозе 12 г/сут.
Кроме того, высокое потребление белка (~64 г в течение 3-часового периода после интенсивных упражнений на выносливость) благоприятно влияет на экспрессию генов, связанную с улучшением использования субстрата и повышением регуляции митохондриального белка.
Таким образом, спортсмены на выносливость могут извлечь пользу из более высокого потребления белка из-за его положительного влияния на восполнение гликогена, улучшенную адаптацию к тренировкам и производительность, поддержку иммунной системы и улучшение маркеров восстановления. Некоторые из этих эффектов еще более выражены в сочетании с углеводами.
Представление о том, что прием белка должен происходить вскоре после (≤1 часа) тренировок с отягощениями, вероятно, набрало обороты, когда Esmarck et al. показало, что прием низких доз белка (10 граммов обезжиренного молока и сои) сразу после тренировок с отягощениями (3 дня в неделю) в течение 12 недель привел к значительному увеличению поперечного сечения мышц и площади мышечных волокон у здоровых пожилых мужчин (n = 7; 74 года).
Кроме того, прием белка сразу после тренировки увеличивал распределение тяжелой цепи миозина (MHC) IIa. Тем не менее, задержка приема белка на 2 часа после тренировки не привела к отсутствию мышечной аккреции и вызвала снижение распределения MHC IIx (n = 6; 74 года).
Что касается мышечной производительности, обе группы белков увеличивали силу с течением времени, но реакция была более последовательной и устойчивой, когда белок потреблялся сразу после тренировки.
Несмотря на то, что это исследование было процитировано в литературе > 800 раз, результаты и обобщение сомнительны из-за очень маленького размера оцениваемой выборки (что приводит к недостаточной статистической мощности и возможной ошибке), низкой дозировки назначенных белковых добавок, а также того, что тренировки с отягощениями не привели к наращиванию мышц в группе, которая отложила прием белка через 2 часа после тренировки.
Несколько линий доказательств в настоящее время опровергают критическую важность приема белка вскоре после (≤1 часа) тренировок с отягощениями для создания мышечной анаболической среды. С механистической точки зрения, Rasmussen et al. не обнаружил различий в скорости исчезновения фенилаланина (показателя синтеза мышечного белка) при употреблении незаменимых аминокислот (6 г) через 1 час 3 часа после острого приступа тренировки с отягощениями у молодых, здоровых взрослых (n = 6; 34 года). Burd et al. показало, что скорость синтеза миофибриллярного белка все еще была сенсибилизирована (реагировала) на 15 граммов белка, потребляемого через 24–27 часов после тренировки у молодых здоровых взрослых (n = 15; 21 год).
Таким образом, даже ожидание целого дня (после тренировки) для употребления небольшого количества белка все равно имеет мышечные анаболические эффекты.
Кроме того, Wall et al. показал, что белок перед сном после тренировки (60 г сыворотки) не притуплял синтетическую реакцию мышечного белка на 20 г сывороточного белка на следующее утро (~ 8 часов раздельного приема белка) у молодых, здоровых взрослых (n = 8; 21 год).
В совокупности результаты исследований показывают, что синтетическая реакция мышечного белка на пищевой белок остается восприимчивой гораздо дольше, чем 1 час после тренировки у молодых, здоровых взрослых.
Необходимость употреблять белок вскоре после тренировок с отягощениями становится еще более произвольной, потому что прием белка перед тренировкой вызывает аналогичные эффекты. Например, Tipton et al. показало, что сывороточный протеин (20 г), употребленный непосредственно перед или через 1 час после острого приступа тренировки с отягощениями, увеличил поглощение аминокислот скелетными мышцами аналогично у молодых, здоровых взрослых (n = 17; 27 лет).
Далее, Candow et al. показал, что прием белка (0,3 г/кг) непосредственно перед или сразу после тренировок с отягощениями в течение 12 недель вызывал аналогичные изменения в безжировой массе всего тела, толщине региональных мышц, силе и суррогатном показателе катаболизма белка всего тела (экскреция 3-метилгистидина с мочой) у здоровых пожилых мужчин (59–76 лет).
Таким образом, научно обоснованные исследования показывают, что прием белка после тренировки с отягощениями (≤1 час) не является абсолютным требованием для создания анаболической среды в скелетных мышцах. Более важным представляется общее ежедневное количество потребляемого пищевого белка. И наоборот, представляется разумным включать белок в питание после тренировки в качестве практического подхода к достижению общей ежедневной цели по содержанию белка.
Вообще, считается, что белок нужен только спортсменам или физически активным людям.
Тем не менее, белок играет важнейшую роль в различных физиологических процессах в организме человека, таких как синтез белка, клеточная сигнализация, насыщение, термогенез и регуляция гликемии.
Человеческое тело состоит примерно из 50 000 различных белков, из которых 65% находятся в скелетных мышцах.
Поэтому достаточное количество пищевого белка необходимо для поддержания мышц, костей и общего здоровья.
Институт медицины рекомендовано, чтобы всем здоровым взрослым требовалось минимум 0,8 г/кг/день и расчетная средняя потребность (EAR) в 0,66 г/кг/день для поддержания функций организма и общего состояния здоровья. Однако имеющиеся данные свидетельствуют о том, что эти рекомендации, возможно, потребуется пересмотреть в отношении лиц, ведущих сидячий образ жизни.
Основой для этих рекомендаций по потреблению белка послужили 19 исследований, в которых изучался азотистый баланс, который измеряет потерю азота (через продукты жизнедеятельности и пот) по сравнению с потреблением азота (через потребление пищи).
Однако метод азотистого баланса является сложным и имеет завышенную задержку азота при заниженной экскреции, что приводит к недооценке потребностей в белке.
В последующем анализе с использованием 28 исследований азотистого баланса (включая 19 исследований, использованных в исследовании Rand et al. 2003), Humayun et al. использовали двухфазную линейную регрессию вместо линейной регрессии, которая использовалась в анализе и рекомендации Rand et al. для рекомендуемой нормы в 0,8 г/кг/сутки для сегодняшней рекомендации в 0,8 г/кг/сутки.
Humayun et al. свидетельствуют о том, что для взрослых, ведущих сидячий образ жизни, рекомендуется находиться в диапазоне 0,91–0,99 г/кг/сут, что на 12–20% выше текущих рекомендаций.
Humayun et al. также использовал более новый метод индексного окисления аминокислот (IAAO) для повторной оценки потребностей в белках. Метод IAAO оценивает суточную потребность в белке путем измерения эффективности нашего организма с помощью определенного показателя незаменимых аминокислот в нашем рационе.
Повторный анализ данных азотистого баланса в сочетании с методом IAAO показал, что идеальное потребление белка для здоровых взрослых составляет от 0,92 до 1,2 г/кг/день. Эти значения на 15–50% превышают существующие рекомендации по суточной норме в 0,8 г/кг/сутки.
Weiler et al. также подчеркнул необходимость более убедительных доказательств того, что нынешние рекомендации по потреблению белка (0,8 г/кг/день) являются адекватными или полезными для всех здоровых взрослых. В дополнение к методу IAAO, согласно которому оптимальный диапазон потребления белка на 15–50% выше, чем RDA, в исследованиях с использованием метода IAAO использовались высококачественные, легко усваиваемые источники белка.
Тем не менее, Weiler et al. подчеркивает, что большинство взрослых, даже в развитых странах, по-прежнему нуждаются в потреблении высококачественных белков. Таким образом, поскольку результаты метода IAAO показали, что ежедневное потребление белка должно быть выше текущей рекомендации, и это было сделано с использованием высококачественных источников белка, можно сделать вывод, что тем, кто не употребляет высококачественные источники белка, может потребоваться даже больше, чем текущий рекомендуемый диапазон 0,92–1,2 г/кг/день Elango et al.
Кроме того, Vieux et al. предположил, что 45-60% белка должно поступать из высококачественных источников животного белка, поскольку веганские источники могут привести к дефициту других питательных веществ, таких как витамин B12, железо, кальций, цинк и омега-3 жирные кислоты.
Долгосрочные исследования показали, что неудовлетворение потребностей в белке может негативно повлиять на азотистый баланс, мышечную массу, иммунитет и функциональную способность.
В систематическом обзоре и метаанализе, проведенном Tagawa et al., сделан вывод о том, что «незначительное увеличение текущего потребления белка в течение нескольких месяцев на 0,1 г/кг/сут дозозависимым образом в диапазоне доз от 0,5 до 3,5 г/кг/сут может привести к увеличению или поддержанию мышечной массы тела»
Кроме того, данные свидетельствуют о том, что пожилые люди могут нуждаться в более высоком потреблении белка, поскольку недостаточное потребление может поставить под угрозу их здоровье.
Например, исследование «Здоровое старение и состав тела» показало, что пожилые люди, потребляющие больше белка, могут поддерживать свою мышечную массу тела.
Аналогичным образом, опрос 142 пожилых людей также выявил положительную корреляцию между потреблением говядины и мышечной областью средней руки .
Пожилые люди демонстрируют анаболическую резистентность (т.е. притупленную реакцию на пищевые белки), что означает, что им требуется больше белка, чем молодым людям, для максимальной стимуляции МПС.
Анаболическая резистентность еще больше подчеркивает необходимость для пожилых людей потреблять больше белка, чем рекомендуется в настоящее время.
В свете ранее опубликованных исследований, рекомендуемое потребление белка должно составлять 1,0–1,2 г/кг в день для оптимального здоровья, причем 45–60% приходится на источники животного белка, независимо от уровня физической активности.
Таким образом, каждый человек (включая людей, ведущих сидячий образ жизни) должен потреблять достаточное количество пищевого белка. Белок выполняет множество важных функций, которые не являются исключительными для занимающихся спортом. Кроме того, имеющиеся данные свидетельствуют о том, что потребление белка является основным модификатором состава тела (т.е. более высокое потребление может привести к улучшению состава тела).
Мясо является обычной частью рациона человека во многих культурах. Чаще всего его собирают из скелетных мышц животных и в основном он состоит из различных количеств белка (предположительно животного белка), насыщенных жирных кислот и мононенасыщенных жирных кислот, а именно олеиновой кислоты.
По данным Продовольственной и сельскохозяйственной организации ООН, птица, свинина и говядина составляют около 85% потребления мяса во всем мире.
Эпидемиологические исследования часто классифицируют мясо на белое (включая птицу), красное мясо (включая говядину и свинину) и обработанное мясо (включая колбасу, мясное ассорти и т. д.).
В 2010 году был проведен систематический обзор и метаанализ проспективных когортных исследований и исследований типа «случай-контроль», в которых приняли участие 56 311 человек, и было обнаружено, что потребление красного мяса не имеет существенной связи с ишемической болезнью сердца. Однако потребление обработанного мяса было связано с повышенным риском.
Эти результаты часто связывают с высоким содержанием насыщенных жирных кислот и/или холестерина; Тем не менее, существуют доказательства того, что потребление насыщенных жирных кислот и/или холестерина не связано с повышением концентрации липидов в сыворотке крови или риском сердечно-сосудистых заболеваний.
Еще одним фактором, который следует учитывать, является потенциальное влияние потребления мяса на риск развития рака. В процессе варки из аминокислот, креатина и жирных кислот, присутствующих в мясе, синтезируются гетероциклические ароматические амины и полициклические ароматические углеводороды.
Предполагается, что воздействие этих соединений связано с онкологическими заболеваниями, особенно легких, пищевода, желудка и толстой кишки.
Несколько метаанализов проспективных когортных исследований показывают повышенный риск развития рака у тех, кто потребляет большое количество красного мяса и обработанного мяса.
Кроме того, анализ «доза-реакция» показывает, что на каждые дополнительные 100 граммов красного мяса и обработанного мяса, потребляемых в день, наблюдается увеличение (от 12 до 35%) риска развития рака.
Тем не менее, эти выводы следует интерпретировать с осторожностью, поскольку большая часть данных получена в результате обсервационных исследований. Han et al. предположили, что возможное абсолютное влияние потребления красного мяса и обработанного мяса на смертность и заболеваемость раком очень мало, а определенность доказательств от низкой до очень низкой.
Кроме того, Hur et al. пришли к выводу, что трудно сделать вывод о том, что диетическое красное мясо является основной причиной колоректального рака.
Действительно, на этиологию колоректального рака могут влиять множество факторов, таких как потребление фруктов и овощей, употребление алкоголя, курение, избыточный вес, ожирение и стресс.
Кроме того, Yun et al. сообщили, что потребление обработанного мяса увеличивает риск колоректального рака, а не других видов рака пищеварительного тракта; Однако причинно-следственной связи между потреблением красного и белого мяса и раком пищеварительного тракта не наблюдалось.
Wu et al. обнаружили, что обработанное мясо может увеличивать риск развития рака легких, при этом нет никаких доказательств того, что красное мясо влияет на другие виды рака.
Крайне важно, чтобы мы знали о других факторах питания или образа жизни, которые могут изменить взаимосвязь между потреблением мяса и раком.
Также важно отметить, что потребление белого мяса и рыбы не связано с одними и теми же негативными последствиями. Недавний обзор 13 проспективных когортных исследований показал, что белое мясо не связано с заболеваемостью сахарным диабетом, но минимально связано с гипертонией, поскольку одно включенное исследование показало положительную связь и было отрицательно связано с метаболическим синдромом.
Два метаанализа показали, что потребление белого мяса отрицательно связано с колоректальным раком, раком легких, пищевода и желудка и не связано с другими видами рака, включая рак поджелудочной железы и почек.
Кроме того, потребление рыбы отрицательно связано с риском развития различных видов рака, в том числе пищеводного.
В крупном многонациональном исследовании, опубликованном в American Journal of Clinical Nutrition, авторы предположили, что умеренное потребление необработанного мяса является нормальным, в то время как потребление обработанного мяса должно быть ограничено.
В исследовании PURE (т.е. Проспективной городской и сельской эпидемиологии (PURE Study)) приняли участие 134 297 человек из 21 страны с низким, средним и высоким уровнем дохода.
Учет потребления пищи проводился с использованием валидированных вопросников о частоте приема пищи для конкретных стран.
Первичными конечными точками были общая смертность и основные сердечно-сосудистые заболевания (ССЗ).
Потребление обработанного мяса было связано с более высоким риском сердечно-сосудистых заболеваний и общей смертностью. И наоборот, они не обнаружили такой связи с потреблением птицы и необработанного мяса.
Как и во всех исследованиях по потреблению мяса как такового, было бы практически невозможно провести рандомизированное контролируемое исследование для установления причинно-следственной связи со смертностью, связанной с сердечно-сосудистыми заболеваниями, раком и т.д. Таким образом, мы остаемся с, казалось бы, противоречивой информацией на эту тему.
Таким образом, обработанное мясо может иметь множество негативных последствий для показателей здоровья.
Тем не менее, необходимо быть осведомленным о влиянии других факторов питания и образа жизни. Употребление белого мяса и рыбы якобы не представляет повышенного риска сердечно-сосудистых заболеваний или различных видов рака и может даже снизить риск развития рака желудочно-кишечного тракта.
Многие высококалорийные пищевые продукты, такие как сыр или арахисовое масло, с гордостью маркируются как хорошие источники белка, что может побудить неосведомленных людей потреблять большое количество таких продуктов для достижения ежедневных целей по потреблению белка.
Тем не менее, эти продукты часто имеют гораздо более высокое содержание жира и калорий при более низком содержании белка на порцию по сравнению с популярными продуктами, богатыми белком, такими как нежирное мясо или молочные продукты с низким содержанием жира, такие как греческий йогурт.
В Соединенных Штатах законы о маркировке диктуют, что для того, чтобы продукт питания был помечен как «хороший источник» белка, он должен содержать 10–19% от суточной нормы на порцию, что соответствует диапазону 5–9,5 г белка.
Однако употребление одной порции сливочного арахисового масла в 2 ст. л. не даст достаточного количества белка (примерно 7 г в соответствии с научно обоснованными рекомендациями по спортивному питанию, такими как рекомендации ISSN, которые рекомендуют потреблять абсолютную дозу белка в пределах 20–40 г за один прием пищи для максимального снижения МПС и последующего спортивного восстановления.
Стандартизированные данные Министерства сельского хозяйства США свидетельствуют о том, что для достижения порога абсолютного потребления белка, указанного в этих рекомендациях, потребуется примерно три порции (примерно 100 г) арахисового масла.
Хотя в 100 г сливочного арахисового масла содержится 24 г белка, он также содержит 49,4 г жира, что дает 632 ккал на 100 г. Точно так же 100 г сыра чеддер содержит 23,3 г белка, 34 г жира и 409 ккал.
Напротив, 100 г приготовленной куриной грудки без кожи содержит 32,1 г белка, 3,24 г жиров и 158 ккал, что делает его и подобные продукты более привлекательным выбором для спортсменов, пытающихся потреблять достаточное количество пищевого белка без потребления дополнительных ненужных калорий из жира, которые могут увеличить риск непреднамеренного увеличения веса.
Недавнее исследование переедания, проведенное Антонио и его коллегами, проиллюстрировало склонность к чрезмерному потреблению высококалорийных продуктов, таких как арахисовое масло, что приводит к увеличению веса.
Исследователи набрали 17 мужщин и женщин, тренирующихся физическими упражнениями, чтобы завершить 4-недельный протокол перекармливания.
Участники были проинструктированы продолжать свою обычную диету и физические упражнения, но также должны были потреблять пять дополнительных банок арахисового масла по 16 унций в течение всего вмешательства.
Анализ данных о потреблении питательных веществ у 14 участников показал, что их диетические жиры и общее потребление калорий значительно увеличились во время вмешательства примерно на 46 г и 526 ккал соответственно.
В группе также наблюдалось значительное увеличение жировой массы без сопутствующего увеличения мышечной массы тела или общего количества воды в организме, что позволяет предположить, что дополнительное потребление арахисового масла оказало вредное влияние на параметры телосложения.
С практической точки зрения, люди должны с осторожностью относиться к потреблению большого количества высококалорийных источников белка в периоды ограничения калорий, когда потребность в белке может быть выше, чем обычно, чтобы свести к минимуму потерю мышечной массы.
Высокое содержание калорий в этих продуктах может значительно затруднить достижение целевых показателей потребления энергии, что приведет к застою или обращению вспять прогресса в диете.
В дополнение к опасениям, связанным с энергетической плотностью и содержанием жиров в белковой пище, следует также уделять внимание качеству самого источника белка.
Показатели качества и усвояемости белка, такие как скорректированный показатель усвояемости белка (PDCAAS) и показатель усвояемости незаменимых аминокислот (DIAAS), ранжируют источники растительного белка, такие как арахисовое масло, орехи и бобовые, намного ниже источников животного происхождения, таких как молочные продукты и мясо, что означает, что меньшая часть пищевого белка, содержащегося в растительных продуктах, переваривается, усваивается и попадает в кровоток.
Действительно, последние данные показывают, что баланс чистого белка во всем организме заметно ниже после стандартизированной порции арахисового масла или смеси орехов по сравнению с более качественными источниками белка, такими как говядина, яйца или свинина.
Таким образом, высококалорийные растительные белковые продукты, такие как арахисовое масло и орехи, не следует использовать в качестве основного источника белка из-за их более низкого качества и более высокой энергетической плотности по сравнению с источниками животного белка или менее калорийными растительными продуктами.
Таким образом, высококалорийные продукты, такие как арахисовое масло и сыр, не являются идеальными источниками белка, поскольку они часто содержат большое количество жира. Такие продукты следует рассматривать как жиры, а не источники белка, и употреблять их в умеренных количествах, чтобы обеспечить удовлетворение соответствующих энергетических потребностей.
Заблуждение о том, что вегетарианцы (ВЕ) и веганы (ВГ) не могут потреблять достаточное количество белка, чтобы вызвать благоприятные адаптации к тренировкам (т.е. рост мышц, увеличение силы, уменьшение жира в организме), коренится в том, что источники животного белка признаны более качественными белками с большей концентрацией незаменимых аминокислот (ЭАА).
Основополагающая работа Буари и др. продемонстрировало, что МПС поражает по-разному в зависимости от скорости переваривания и всасывания, а также от содержания ЭАК в источнике белка (т.е. сыворотке или казеине). В связи с этим животные белки содержат большее количество EAA (до ≈ на 42% больше, чем растительные источники), быстро усваиваются и увеличивают концентрацию EAA в плазме, выступая в качестве мощного стимулятора MPSs.
Для сравнения, растительные белки (т.е. соя, тофу, бобовые) усваиваются медленнее из-за их неполного аминокислотного профиля и более низкого содержания EAA и тем самым не стимулируют МПС в той же степени, что и сывороточный протеин.
Например, Тан и коллеги продемонстрировало, что сывороточный белок вызывает на 18% (p < 0,067) и 31% (p < 0,05) больший ответ на МПС, чем соевый белок в состоянии покоя и после тренировки соответственно. Кроме того, Yang et al. Продемонстрировало, что дозы сывороточного белка в дозе 20 г и 40 г эффективно стимулировали МПС в покое и после тренировки, в то время как доза 40 г соевого белка после тренировки приводила к увеличению МПС, которое было незначительно ниже (т.е. ≈0,08%/ч против ≈0,06%/ч для сыворотки и сои соответственно).
В то время как сывороточный протеин вызывает наиболее устойчивый ответ на МПС, новые данные свидетельствуют о том, что растительные белки могут повышать уровень МПС выше уровня покоя.
Активным людям и спортсменам необходимо потреблять 1,4–2,0 г/кг/сут белка для поддержания положительного азотистого баланса и потреблять порции белка, содержащие не менее 6,0 г EAA и 2,0 г лейцина для оптимизации МПС для содействия благоприятным изменениям мышечной массы и силы во время тренировки.
Важно отметить, что VE и VG может потребоваться увеличить количество потребляемого растительного белка, чтобы обеспечить получение достаточного количества EAA (особенно лейцина), сравнимого с продуктами животного белка.
Для получения 2,0 г лейцина или 6,0 г EAA соответственно может потребоваться потреблять на 53% или 75% больше растительного белка, чем животного белка. Следовательно, для VE и VG важно убедиться, что их источник (источники) белка содержит достаточное количество EAA и лейцина в легкоусвояемом формате. Кроме того, сообщалось, что спортсмены с VE и VG потребляют меньше энергии и белка по сравнению со своими всеядными коллегами и более восприимчивы к дефициту энергии, белковой недостаточности и перетренированности.
Поэтому акцент следует делать на том, чтобы спортсмены с VE и VG потребляли достаточное количество калорий и белка, особенно во время интенсивных тренировочных периодов, для поддержания положительного баланса белка и улучшения адаптации к тренировкам.
Фактические данные свидетельствуют о том, что растительные диеты с дополнительными источниками растительного белка могут увеличивать МПС и усиливать адаптацию к тренировкам.
За исключением Volek et al, по-видимому, источники растительного белка могут благоприятно влиять на состав тела и адаптацию к тренировкам, когда: 1) общее ежедневное потребление белка составляет ≈ 1,4–2,0 г/кг/день, 2) источник растительного белка обеспечивает ≥ 8–10 г/день EAA, и 3) источник растительного белка содержит ≈2,0 г лейцина.
Например, Hevia-Larrain et al. сообщили, что физически активные привычные ВГ, потребляющие 1,6 г/
кг/сут из цельных продуктов и сои (содержащей достаточное количество ЭАА и лейцина) в течение 12 недель, испытали аналогичные изменения в составе тела и тренировках с отягощениями по сравнению с привычной, совместимой с белком всеядной диетой. В обеих группах с обычным VG и всеядным наблюдалось аналогичное увеличение мышечной массы всего тела (4,4% и 6,2% соответственно), площади поперечного сечения мышечных волокон (данные не представлены) и максимального жима ногой за одно повторение (1-RM) (98% и 102% соответственно). Эти результаты свидетельствуют о том, что употребление исключительно растительной диеты может адекватно улучшить результаты тренировок при достижении оптимального потребления белка.
Аналогичным образом, Candow et al. оценивали 27 нетренированных мужчин и женщин, употреблявших либо соевый, либо сывороточный белок (три равные дозы для удовлетворения общей суточной нормы белка 1,2 г/кг/сут) или плацебо в течение шести недель, следуя программе тренировок с отягощениями для всего тела (4 дня в неделю, 6–12 повторений при 60–90% 1ПМ на 6–9 различных упражнениях). Обе группы испытали аналогичное увеличение мышечной массы (3,1% и 4,7% соответственно) и 1-RM жима лежа (13,4% и 14% соответственно) и силы приседаний (34% и 38,6% соответственно) по сравнению с плацебо (мышечная масса: 0,5%; 1-RM жим лежа: 7,1%; 1-RM приседание: 19,7%).
Эти результаты указывают на то, что адаптация к тренировкам с отягощениями может быть обеспечена независимо от источника белка. Мун и др. также сообщил, что 24 здоровых мужчины, тренирующихся с отягощениями, потреблявших 24 г риса или добавки сывороточного белка во время выполнения программы тренировок с отягощениями (4 дня в неделю, разделение тела, 3–4 подхода по 6–10 повторений), испытали аналогичное увеличение массы тела (0,6% против 1,4%), мышечной массы (0,9% против 0,7%) и силы жима лежа 1-RM (3,6% против 2,2%) и жима ногами (6,9% против 8,2%) в группах риса и сыворотки. соответственно. Примечательно, что оцененная доза риса и сывороточного белка содержала ≈10 г EAA и ≈2,0 г лейцина.
Это еще раз подтверждает мнение о том, что при тщательном планировании питания растительные источники белка могут вызвать благоприятные результаты тренировок. Кроме того, Линч и Коллоги продемонстрировало, что у нетренированных мужчин и женщин, принимавших добавки сразу после тренировки изолятами соевого (19 г) и сывороточного белка (24 г), которые были совместимы с лейцином (т.е. ≈2,0 г), наблюдалось аналогичное увеличение мышечной массы (2,5% против 3,4%) и крутящего момента изокинетического динамометра при сгибании колена (25,3% против 33,7%) и разгибании колена (21,5% против 32,3%), а также аналогичное снижение процентного содержания жира в организме (−3,6% против −5,4%) в группах сои и сыворотки, соответственно. Наконец, Банашек и др. сообщили, что 15 тренированных мужчин, принимавших две дозы по 24 г горохового или сывороточного протеина до и после высокоинтенсивных функциональных тренировок (т.е. 4× в неделю CrossFit при 60–100% 1-RM плюс метаболическое кондиционирование) в течение восьми недель, испытали аналогичное увеличение силы 1-RM для приседаний (6,2% против 3,7% соответственно) и становой тяги (3,9% против 5,2%), соответственно). И наоборот, Volek et al.
сообщили, что менее благоприятные адаптации к тренировкам (т.е. 1-RM сила и мышечная масса) будут иметь место, если не будет предпринято тщательное планирование для обеспечения необходимого количества EAA и лейцина, содержащегося в растительном источнике. Сывороточный протеин, по-видимому, способствует большему среднему изменению от исходных значений (которые не всегда статистически значимы) для массы тела, мышечной массы, силы верхней и нижней части тела на 1-RM и толщины мышц по сравнению с растительным источником белка. В совокупности эти исследования показывают, что растительные источники белка могут способствовать таким же тренировкам и адаптации состава тела, как и источники животного белка, когда в рационе потребляется достаточное количество EAA и лейцина. Читатели отсылаются к нескольким более всесторонним обзорам на эту тему.
Таким образом, веганы и вегетарианцы могут удовлетворить свои общие ежедневные потребности в энергии и белке, несмотря на превосходство животных белков над растительными. Веганы и вегетарианцы обычно должны потреблять на ~ 20-40% больше растительного белка, чем животного белка, чтобы обеспечить аналогичное количество EAA и лейцина, особенно в периоды тренировок с отягощениями.